Hybrid Metaheuristic Algorithm for Real Time Task Assignment Problem in Heterogeneous Multiprocessors
نویسندگان
چکیده
The assignments of real time tasks to heterogeneous multiprocessors in real time applications are very difficult in scenarios that require high performance. The main problem in the heterogeneous multiprocessor system is task assignment to the processors because the execution time for each task varies from one processor to another. Hence, the problem of finding a solution for task assignment to heterogeneous processor without exceeding the processors capacity in general is an NP hard problem. In order to meet the constraints in real time systems, a Hybrid Max-Min Ant colony optimization algorithm (HMMAS) is proposed in this paper. Max-Min Ant System (MMAS) is extended with a local search heuristic to improve task assignment solution. The Local Search has resulted in maximizing the number of tasks assigned as well as minimizing the energy consumption. The performance of the proposed algorithm H-MMAS is compared with the Modified BPSO, ACO, MMAS algorithms in terms of the average number of task assigned, normalized energy consumption, quality of solution and average CPU time. From the experimental results, the proposed algorithm has outperformed MMAS, Modified BPSO and ACO for consistency matrix. In case of inconsistency matrix H-MMAS performed better than Modified BPSO, similar to ACO and MMAS, but there is an improvement in the normalized energy consumption.
منابع مشابه
Hybrid Meta-heuristic Algorithm for Task Assignment Problem
Task assignment problem (TAP) involves assigning a number of tasks to a number of processors in distributed computing systems and its objective is to minimize the sum of the total execution and communication costs, subject to all of the resource constraints. TAP is a combinatorial optimization problem and NP-complete. This paper proposes a hybrid meta-heuristic algorithm for solving TAP in a ...
متن کاملAn Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ
An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...
متن کاملAn Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ
An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...
متن کاملA New Hybrid Meta-Heuristics Approach to Solve the Parallel Machine Scheduling Problem Considering Human Resiliency Engineering
This paper proposes a mixed integer programming model to solve a non-identical parallel machine (NIPM) scheduling with sequence-dependent set-up times and human resiliency engineering. The presented mathematical model is formulated to consider human factors including Learning, Teamwork and Awareness. Moreover, processing time of jobs are assumed to be non-deterministic and dependent to their st...
متن کاملThree Hybrid Metaheuristic Algorithms for Stochastic Flexible Flow Shop Scheduling Problem with Preventive Maintenance and Budget Constraint
Stochastic flexible flow shop scheduling problem (SFFSSP) is one the main focus of researchers due to the complexity arises from inherent uncertainties and also the difficulty of solving such NP-hard problems. Conventionally, in such problems each machine’s job process time may encounter uncertainty due to their relevant random behaviour. In order to examine such problems more realistically, fi...
متن کامل